TY - BOOK AU - Rau,U. AU - Abou-Ras,Daniel AU - Kirchartz,Thomas TI - Advanced characterization techniques for thin film solar cells SN - 9783527636303 AV - TK8322 .A38 2011eb U1 - 621.472 22 PY - 2011/// CY - Weinheim, Germany PB - Wiley-VCH KW - Photovoltaic cells KW - Materials KW - Research KW - TECHNOLOGY & ENGINEERING KW - Mechanical KW - bisacsh KW - Electronic books N1 - Includes bibliographical references and index; Machine generated contents note; pt. one; Introduction --; 1; Introduction to Thin-Film Photovoltaics; Uwe Rau --; 1.1; Introduction --; 1.2; The Photovoltaic Principle --; 1.2.1; The Shockley-Queisser Theory --; 1.2.2; From the Ideal Solar Cell to Real Solar Cells --; 1.2.3; Light Absorption and Light Trapping --; 1.2.4; Charge Extraction --; 1.2.5; Nonradiative Recombination --; 1.3; Functional Layers in Thin-Film Solar Cells --; 1.4; Comparison of Various Thin-Film Solar-Cell Types --; 1.4.1; Cu(In, Ga)Se2 --; 1.4.1.1; Basic Properties and Technology --; 1.4.1.2; Layer-Stacking Sequence and Band Diagram of the Heterostructure --; 1.4.2; CdTe --; 1.4.2.1; Basic Properties and Technology --; 1.4.2.2; Layer-Stacking Sequence and Band Diagram of the Heterostructure --; 1.4.3; Thin-Film Silicon Solar Cells --; 1.4.3.1; Hydrogenated Amorphous Si (a-Si: H) --; 1.4.3.2; Metastability in a-Si: H: The Staebler-Wronski Effect --; 1.4.3.3; Hydrogenated Microcrystalline Silicon (& mu;c-Si: H) --; 1.4.3.4; Micromorph Tandem Solar Cells; 1.5; Conclusions --; References --; pt. Two; Device Characterization --; 2; Fundamental Electrical Characterization of Thin-Film Solar Cells; Uwe Rau --; 2.1; Introduction --; 2.2; Current/Voltage Curves --; 2.2.1; Shape of Current/Voltage Curves and their Description with Equivalent Circuit Models --; 2.2.2; Measurement of Current/Voltage Curves --; 2.2.3; Determination of Ideality Factors and Series Resistances --; 2.2.4; Temperature-Dependent Current/Voltage Measurements --; 2.3; Quantum Efficiency Measurements --; 2.3.1; Definition --; 2.3.2; Measurement Principle and Calibration --; 2.3.3; Quantum Efficiency Measurements of Tandem Solar Cells --; 2.3.4; Differential Spectral Response (DSR) Measurements --; 2.3.5; Interpretation of Quantum Efficiency Measurements in Thin-Film Silicon Solar Cells --; References --; 3; Electroluminescence Analysis of Solar Cells and Solar Modules; Uwe Rau --; 3.1; Introduction --; 3.2; Basics --; 3.3; Spectrally Resolved Electroluminescence --; 3.4; Spatially Resolved Electroluminescence of c-Si Solar Cells --; 3.5; Electroluminescence Imaging of Cu(In, Ga)Se2 Thin-Film Modules; 3.6; Modeling of Spatially Resolved Electroluminescence --; References --; 4; Capacitance Spectroscopy of Thin-Film Solar Cells; Pawel Zabierowski --; 4.1; Introduction --; 4.2; Admittance Basics --; 4.3; Sample Requirements --; 4.4; Instrumentation --; 4.5; Capacitance-Voltage Profiling and the Depletion Approximation --; 4.6; Admittance Response of Deep States --; 4.7; The Influence of Deep States on CV Profiles --; 4.8; DLTS --; 4.8.1; DLTS of Thin-Film PV Devices --; 4.9; Admittance Spectroscopy --; 4.10; Drive Level Capacitance Profiling --; 4.11; Photocapacitance --; 4.12; The Meyer-Neldel Rule --; 4.13; Spatial Inhomogeneities and Interface States --; 4.14; Metastability --; References --; pt. Three; Materials Characterization --; 5; Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy; Karsten Bittkau --; 5.1; Introduction --; 5.2; How Does a Scanning Near-Field Optical Microscope Work? --; 5.3; Light Scattering in the Wave Picture --; 5.4; The Role of Evanescent Modes for Light Trapping --; 5.5; Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation; 5.6; How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? --; 5.7; Conclusion --; References --; 6; Spectroscopic Ellipsometry; Robert W. Collins --; 6.1; Introduction --; 6.2; Theory --; 6.2.1; Polarized Light --; 6.2.2; Reflection from a Single Interface --; 6.3; Ellipsometry Instrumentation --; 6.3.1; Rotating Analyzer SE for Ex-Situ Applications --; 6.3.2; Rotating Compensator SE for Real-Time Applications --; 6.4; Data Analysis --; 6.4.1; Exact Numerical Inversion --; 6.4.2; Least-Squares Regression --; 6.4.3; Virtual Interface Analysis --; 6.5; RTSE of Thin Film Photovoltaics --; 6.5.1; Thin Si: H --; 6.5.2; CdTe --; 6.5.3; CuInSe2 --; 6.6; Summary and Future --; 6.7; Definition of Variables --; References --; 7; Photoluminescence Analysis of Thin-Film Solar Cells; Levent Gutay --; 7.1; Introduction --; 7.2; Experimental Issues --; 7.2.1; Design of the Optical System --; 7.2.2; Calibration --; 7.2.3; Cryostat --; 7.3; Basic Transitions --; 7.3.1; Excitons --; 7.3.2; Free-Bound Transitions --; 7.3.3; Donor-Acceptor Pair Recombination --; 7.3.4; Potential Fluctuations; 7.3.5; Band-Band Transitions --; 7.4; Case Studies --; 7.4.1; Low-Temperature Photoluminescence Analysis --; 7.4.2; Room-Temperature Measurements: Estimation of Voc from PL Yield --; 7.4.3; Spatially Resolved Photoluminescence: Absorber Inhomogeneities --; References --; 8; Steady-State Photocarrier Crating Method; Rudolf Bruggemann --; 8.1; Introduction --; 8.2; Basic Analysis of SSPG and Photocurrent Response --; 8.2.1; Optical Model --; 8.2.2; Semiconductor Equations --; 8.2.3; Diffusion Length: Ritter-Zeldov-Weiser Analysis --; 8.2.3.1; Evaluation Schemes --; 8.2.4; More Detailed Analyses --; 8.2.4.1; Influence of the Dark Conductivity --; 8.2.4.2; Influence of Traps --; 8.2.4.3; Minority-Carrier and Majority-Carrier Mobility-Lifetime Products --; 8.3; Experimental Setup --; 8.4; Data Analysis --; 8.5; Results --; 8.5.1; Hydrogenated Amorphous Silicon --; 8.5.1.1; Temperature and Generation Rate Dependence --; 8.5.1.2; Surface Recombination --; 8.5.1.3; Electric-Field Influence --; 8.5.1.4; Fermi-Level Position --; 8.5.1.5; Defects and Light-Induced Degradation; 8.5.1.6; Thin-Film Characterization and Deposition Methods --; 8.5.2; Hydrogenated Amorphous Silicon Alloys --; 8.5.3; Hydrogenated Microcrystalline Silicon --; 8.5.4; Hydrogenated Microcrystalline Germanium --; 8.5.5; Other Thin-Film Semiconductors --; 8.6; Density-of-States Determination --; 8.7; Summary --; References --; 9; Time-of-Flight Analysis; Torsten Bronger --; 9.1; Introduction --; 9.2; Fundamentals of TOF Measurements --; 9.2.1; Anomalous Dispersion --; 9.2.2; Basic Electronic Properties of Thin-Film Semiconductors --; 9.3; Experimental Details --; 9.3.1; Accompanying Measurements --; 9.3.1.1; Capacitance --; 9.3.1.2; Collection --; 9.3.1.3; Built-in Field --; 9.3.2; Current Decay --; 9.3.3; Charge Transient --; 9.3.4; Possible Problems --; 9.3.4.1; Dielectric Relaxation --; 9.3.5; Inhomogeneous Field --; 9.4; Analysis of TOF Results --; 9.4.1; Multiple Trapping --; 9.4.1.1; Overview of the Processes --; 9.4.1.2; Energetic Distribution of Carriers --; 9.4.1.3; Time Dependence of Electrical Current --; 9.4.2; Spatial Charge Distribution --; 9.4.2.1; Temperature Dependence; 9.4.3; Density of States --; 9.4.3.1; Widths of Band Tails --; 9.4.3.2; Probing of Deep States --; References --; 10; Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si: H); Jan Behrends --; 10.1; Introduction --; 10.2; Basics of ESR --; 10.3; How to Measure ESR --; 10.3.1; ESR Setup and Measurement Procedure --; 10.3.2; Pulse ESR --; 10.3.3; Sample Preparation --; 10.4; The g Tensor and Hyperfine Interaction in Disordered Solids --; 10.4.1; Zeeman Energy and g Tensor --; 10.4.2; Hyperfine Interaction --; 10.4.3; Line-Broadening Mechanisms --; 10.5; Discussion of Selected Results --; 10.5.1; ESR on Undoped a-Si: H --; 10.5.2; LESR on Undoped a-Si: H --; 10.5.3; ESR on Doped a-Si: H --; 10.5.4; Light-Induced Degradation in a-Si: H --; 10.5.4.1; Excess Charge-Carrier Recombination and Weak Si-Si Bond Breaking --; 10.5.4.2; Si-H Bond Dissociation and Hydrogen Collision Model --; 10.5.4.3; Transformation of Existing Nonparamagnetic Charged Dangling-Bond Defects --; 10.6; Alternative ESR Detection --; 10.6.1; History of EDMR --; 10.6.2; EDMR on a-Si: H Solar Cells; 10.7; Concluding Remarks --; References --; 11; Scanning Probe Microscopy on Inorganic Thin Films for Solar Cells; Iris Visoly-Fisher --; 11.1; Introduction --; 11.2; Experimental Background --; 11.2.1; Atomic Force Microscopy --; 11.2.1.1; Contact Mode --; 11.2.1.2; Noncontact Mode --; 11.2.2; Conductive Atomic Force Microscopy --; 11.2.3; Scanning Capacitance Microscopy --; 11.2.4; Kelvin Probe Force Microscopy --; 11.2.5; Scanning Tunneling Microscopy --; 11.2.6; Issues of Sample Preparation --; 11.3; Selected Applications --; 11.3.1; Surface Homogeneity --; 11.3.2; Grain Boundaries --; 11.3.3; Cross-Sectional Studies --; 11.4; Summary --; References --; 12; Electron Microscopy on Thin Films for Solar Cells; Sebastian S. Schmidt --; 12.1; Introduction --; 12.2; Scanning Electron Microscopy --; 12.2.1; Imaging Techniques --; 12.2.2; Electron Backscatter Diffraction --; 12.2.3; Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry --; 12.2.4; Electron-Beam-Induced Current Measurements --; 12.2.4.1; Electron-Beam Generation --; 12.2.4.2; Charge-Carrier Collection in a Solar Cell; 12.2.4.3; Experimental Setups --; 12.2.4.4; Critical Issues --; 12.2.5; Cathodoluminescence --; 12.2.5.1; Example: Spectrum Imaging of CdTe Thin Films --; 12.2.6; Scanning Probe and Scanning-Probe Microscopy Integrated Platform --; 12.2.7; Combination of Various Scanning Electron Microscopy Techniques --; 12.3; Transmission Electron Microscopy --; 12.3.1; Imaging Techniques --; 12.3.1.1; Bright-Field and Dark-Field Imaging in the Conventional Mode --; 12.3.1.2; High-Resolution Imaging in the Conventional Mode --; 12.3.1.3; Imaging in the Scanning Mode Using an Annular Dark-Field Detector --; 12.3.2; Electron Diffraction; Note continued; 12.3.2.1; Selected-Area Electron Diffraction in the Conventional Mode --; 12.3.2.2; Convergent-Beam Electron Diffraction in the Scanning Mode --; 12.3.3; Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy --; 12.3.3.1; Scattering Theory --; 12.3.3.2; Experiment and Setup --; 12.3.3.3; The Energy-Loss Spectrum --; 12.3.3.4; Applications and Comparison with EDX Spectroscopy --; 12.3.4; Off-Axis and In-Line Electron Holography --; 12.4; Sample Preparation Techniques --; 12.4.1; Preparation for Scanning Electron Microscopy --; 12.4.2; Preparation for Transmission Electron Microscopy --; References --; 13; X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells; Roland Mainz --; 13.1; Introduction --; 13.2; Diffraction of X-Rays and Neutron by Matter --; 13.3; Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells --; 13.3.1; Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe2 by Neutron Diffraction; 13.4; Grazing Incidence X-Ray Diffraction (GIXRD) --; 13.5; Energy Dispersive X-Ray Diffraction (EDXRD) --; References --; 14; Raman Spectroscopy on Thin Films for Solar Cells; Alejandro Perez-Rodriguez --; 14.1; Introduction --; 14.2; Fundamentals of Raman Spectroscopy --; 14.3; Vibrational Modes in Crystalline Materials --; 14.4; Experimental Considerations --; 14.4.1; Laser Source --; 14.4.2; Light Collection and Focusing Optics --; 14.4.3; Spectroscopic Module --; 14.5; Characterization of Thin-Film Photovoltaic Materials --; 14.5.1; Identification of Crystalline Structures --; 14.5.2; Evaluation of Film Crystallinity --; 14.5.3; Chemical Analysis of Semiconducting Alloys --; 14.5.4; Nanocrystalline and Amorphous Materials --; 14.5.5; Evaluation of Stress --; 14.6; Conclusions --; References --; 15; Soft X-Ray and Electron Spectroscopy: A Unique "Tool Chest" to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces; Clemens Heske --; 15.1; Introduction --; 15.2; Characterization Techniques --; 15.3; Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers; 15.4; Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells --; 15.5; Summary --; References --; 16; Elemental Distribution Profiling of Thin Films for Solar Cells; Raquel Caballero --; 16.1; Introduction --; 16.2; Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) --; 16.2.1; Principles --; 16.2.2; Instrumentation --; 16.2.2.1; Plasma Sources --; 16.2.2.2; Plasma Conditions --; 16.2.2.3; Detection of Optical Emission --; 16.2.2.4; Mass Spectroscopy --; 16.2.3; Quantification --; 16.2.3.1; Glow Discharge-Optical Emission Spectroscopy --; 16.2.3.2; Glow Discharge-Mass Spectroscopy --; 16.2.4; Applications --; 16.2.4.1; Glow Discharge-Optical Emission Spectroscopy --; 16.2.4.2; Glow Discharge-Mass Spectroscopy --; 16.3; Secondary Ion Mass Spectrometry (SIMS) --; 16.3.1; Principle of the Method --; 16.3.2; Data Analysis --; 16.3.3; Quantification --; 16.3.4; Applications for Solar Cells --; 16.4; Auger Electron Spectroscopy (AES) --; 16.4.1; Introduction --; 16.4.2; The Auger Process --; 16.4.3; Auger Electron Signals; 16.4.4; Instrumentation --; 16.4.5; Auger Electron Signal Intensities and Quantification --; 16.4.6; Quantification --; 16.4.7; Application --; 16.5; X-Ray Photoelectron Spectroscopy (XPS) --; 16.5.1; Theoretical Principles --; 16.5.2; Instrumentation --; 16.5.3; Application to Thin Film Solar Cells --; 16.6; Energy-Dispersive X-Ray Analysis on Fractured Cross Sections --; 16.6.1; Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope --; 16.6.2; Spatial Resolutions --; 16.6.3; Applications --; 16.6.3.1; Sample Preparation --; References --; 17; Hydrogen Effusion Experiments; Florian Einsele --; 17.1; Introduction --; 17.2; Experimental Setup --; 17.3; Data Analysis --; 17.3.1; Identification of Rate-Limiting Process --; 17.3.2; Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements --; 17.3.3; Analysis of H2 Surface Desorption --; 17.3.4; Analysis of Diffusion-Limited Effusion --; 17.3.5; Analysis of Effusion Spectra in Terms of Hydrogen Density of States --; 17.3.6; Analysis of Film Microstructure by Effusion of Implanted Rare Gases; 17.4; Discussion of Selected Results --; 17.4.1; Amorphous Silicon and Germanium Films --; 17.4.1.1; Material Density versus Annealing and Hydrogen Content --; 17.4.1.2; Effect of Doping on H Effusion --; 17.4.2; Amorphous Silicon Alloys: Si-C --; 17.4.3; Microcrystalline Silicon --; 17.4.4; Zinc Oxide Films --; 17.5; Comparison with Other Experiments --; 17.6; Concluding Remarks --; References --; pt. Four; Materials and Device Modeling --; 18; Ab-Initio Modeling of Defects in Semiconductors; Johan Pohl --; 18.1; Introduction --; 18.2; Density Functional Theory and Methods --; 18.2.1; Basis Sets --; 18.2.2; Functionals for Exchange and Correlation --; 18.2.2.1; Local Approximations --; 18.2.2.2; Functionals Beyond LDA/GGA --; 18.3; Methods Beyond DFT --; 18.4; From Total Energies to Materials' Properties --; 18.5; Ab-initio Characterization of Point Defects --; 18.5.1; Thermodynamics of Point Defects --; 18.5.2; Formation Energies from Ab-Initio Calculations --; 18.5.3; Case study Point Defects in ZnO --; 18.6; Conclusions --; References --; 19; One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells; Thomas Kirchartz; 19.1; Introduction --; 19.2; Fundamentals --; 19.3; Modeling Hydrogenated Amorphous and Microcrystalline Silicon --; 19.3.1; Density of States and Transport Hydrogenated Amorphous Silicon --; 19.3.2; Density of States and Transport Hydrogenated Microcrystalline Silicon --; 19.3.3; Modeling Recombination in a-Si: H and & mu;c-Si: H --; 19.3.3.1; Recombination Statistics for Single-Electron States: Shockley-Read-Hall Recombination --; 19.3.3.2; Recombination Statistics for Amphoteric States --; 19.3.4; Modeling Cu(In, Ga)Se2 Solar Cells --; 19.3.4.1; Graded Band-Gap Devices --; 19.3.4.2; Issues when Modeling Graded Band-Gap Devices --; 19.3.4.3; Example --; 19.3.5; Modeling of CdTe Solar Cells --; 19.3.5.1; Baseline --; 19.3.5.2; The & Phi;b -- NAc (Barrier-Doping) Trade-Off --; 19.3.5.3; C-V Analysis as an Interpretation Aid of I-V Curves --; 19.4; Optical Modeling of Thin Solar Cells --; 19.4.1; Coherent Modeling of Flat Interfaces --; 19.4.2; Modeling of Rough Interfaces --; 19.5; Tools --; 19.5.1; AFORS-HET --; 19.5.2; AMPS-1D --; 19.5.3; ASA --; 19.5.4; PC1D --; 19.5.5; SCAPS; 19.5.6; SC-SIMUL --; References --; 20; Two- and Three-Dimensional Electronic Modeling of Thin-Film Solar Cells; Wyatt K. Metzger --; 20.1; Introduction --; 20.2; Applications --; 20.3; Methods --; 20.3.1; Equivalent-Circuit Modeling --; 20.3.2; Solving Semiconductor Equations --; 20.4.2.1; Creating a Semiconductor Model --; 20.4; Examples --; 20.4.1; Equivalent-Circuit Modeling Examples --; 20.4.2; Semiconductor Modeling Examples --; 20.5; Summary --; References UR - http://onlinelibrary.wiley.com/book/10.1002/9783527636280 ER -