000 08233cam a2200853 i 4500
001 ocn812531839
003 OCoLC
005 20171224114057.0
006 m o d
007 cr |||||||||||
008 121009s2013 enk ob 001 0 eng
010 _a 2012041383
040 _aDLC
_beng
_erda
_epn
_cDLC
_dDG1
_dN$T
_dE7B
_dOCLCF
_dRECBK
_dUKDOC
_dYDXCP
_dCOO
_dIDEBK
_dEBLCP
_dDEBSZ
_dDEBBG
_dOCLCQ
_dLOA
019 _a827207524
_a828247113
_a842860129
_a966148076
020 _a9781118481837
_q(ePub)
020 _a1118481836
_q(ePub)
020 _a9781118481813
_q(MobiPocket)
020 _a111848181X
_q(MobiPocket)
020 _a9781118481820
_q(Adobe PDF)
020 _a1118481828
_q(Adobe PDF)
020 _a9781118481844
_q(electronic bk.)
020 _a1118481844
_q(electronic bk.)
020 _a9781299188747
_q(MyiLibrary)
020 _a1299188745
_q(MyiLibrary)
020 _z9780470770825
_q(hardback)
020 _z0470770821
_q(hardback)
029 1 _aAU@
_b000053301094
029 1 _aDEBBG
_bBV041069308
029 1 _aDEBBG
_bBV041905155
029 1 _aDEBSZ
_b431332746
029 1 _aDKDLA
_b820120-katalog:000655367
029 1 _aNZ1
_b15341588
029 1 _aDEBBG
_bBV043395105
035 _a(OCoLC)812531839
_z(OCoLC)827207524
_z(OCoLC)828247113
_z(OCoLC)842860129
_z(OCoLC)966148076
037 _a450124
_bMIL
042 _apcc
050 0 0 _aTA340
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
082 0 0 _a620.001/51922
_223
084 _aSCI041000
_2bisacsh
049 _aMAIN
100 1 _aKamiński, M. M.
_q(Marcin M.),
_d1969-
245 1 4 _aThe stochastic perturbation method for computational mechanics /
_cMarcin Kamiński.
264 1 _aChichester, West Sussex, United Kingdom :
_bWiley,
_c2013.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _a"Probabilistic analysis is increasing in popularity and importance within engineering and the applied sciences. However, the stochastic perturbation technique is a fairly recent development and therefore remains as yet unknown to many students, researchers and engineers. Fields in which the methodology can be applied are widespread, including various branches of engineering, heat transfer and statistical mechanics, reliability assessment and also financial investments or economical prognosis in analytical and computational contexts. Stochastic Perturbation Method in Applied Sciences and Engineering is devoted to the theoretical aspects and computational implementation of the generalized stochastic perturbation technique. It is based on any order Taylor expansions of random variables and enables for determination of up to fourth order probabilistic moments and characteristics of the physical system response. Key features: Provides a grounding in the basic elements of statistics and probability and reliability engineering Describes the Stochastic Finite, Boundary Element and Finite Difference Methods, formulated according to the perturbation method Demonstrates dual computational implementation of the perturbation method with the use of Direct Differentiation Method and the Response Function Method Accompanied by a website (www.wiley.com/go/kaminski) with supporting stochastic numerical software Covers the computational implementation of the homogenization method for periodic composites with random and stochastic material properties Features case studies, numerical examples and practical applications Stochastic Perturbation Method in Applied Sciences and Engineering is a comprehensive reference for researchers and engineers, and is an ideal introduction to the subject for postgraduate and graduate students"--
_cProvided by publisher.
520 _a"Offers a complete overveiew of the stochastic perturbation technique, which is still a new area for a wide spectrum of researchers"--
_cProvided by publisher.
504 _aIncludes bibliographical references and index.
500 _aMachine generated contents note: Introduction 3 1. Mathematical considerations 14 1.1. Stochastic perturbation technique basis 14 1.2. Least squares technique description 34 1.3. Time series analysis 47 2. The Stochastic Finite Element Method (SFEM) 73 2.1. Governing equations and variational formulation 73 2.1.1. Linear potential problems 73 2.1.2. Linear elastostatics 75 2.1.3. Nonlinear elasticity problems 78 2.1.4. Variational equations of elastodynamics 79 2.1.5. Transient analysis of the heat transfer 80 2.1.6. Thermo-piezoelectricity governing equations 82 2.1.7. Navier-Stokes equations 86 2.2. Stochastic Finite Element Method equations 89 2.2.1. Linear potential problems 89 2.2.2. Linear elastostatics 91 2.2.3. Nonlinear elasticity problems 94 2.2.4. SFEM in elastodynamics 98 2.2.5. Transient analysis of the heat transfer 101 2.2.6. Coupled thermo-piezoelectrostatics SFEM equations 105 2.2.7. Navier-Stokes perturbation-based equations 107 2.3. Computational illustrations 109 2.3.1. Linear potential problems 109 2.3.1.1. 1D fluid flow with random viscosity 109 2.3.1.2. 2D potential problem by the response function 114 2.3.2. Linear elasticity 118 2.3.2.1. Simple extended bar with random stiffness 118 2.3.2.2. Elastic stability analysis of the steel telecommunication tower 123 2.3.3. Nonlinear elasticity problems 129 2.3.4. Stochastic vibrations of the elastic structures 133 2.3.4.1. Forced vibrations with random parameters for a simple 2 d.o.f. system 133 2.3.4.2. Eigenvibrations of the steel telecommunication tower with random stiffness 138 2.3.5. Transient analysis of the heat transfer 140 2.3.5.1. Heat conduction in the statistically homogeneous rod 140 2.3.5.2. Transient heat transfer analysis by the RFM 145 3. The Stochastic Boundary Element Method (SBEM) 152 3.1. Deterministic formulation of the Boundary Element Method 151 3.2. Stochastic generalized perturbation approach to the BEM 156 3.3. The Response Function Method into the SBEM equations 158 3.4. Computational experiments 162 4. The Stochastic Finite Difference Method (SFDM) 186 4.1. Analysis of the unidirectional problems with Finite Differences 186 4.1.1. Elasticity problems 186 4.1.2. Determination of the critical moment for the thin-walled elastic structures 199 4.1.3. Introduction to the elastodynamics using difference calculus 204 4.1.4. Parabolic differential equations 210 4.2. Analysis of the boundary value problems on 2D grids 214 4.2.1. Poisson equation 214 4.2.2. Deflection of elastic plates in Cartesian coordinates 219 4.2.3. Vibration analysis of the elastic plates 227 5. Homogenization problem 230 5.1. Composite material model 232 5.2. Statement of the problem and basic equations 237 5.3. Computational implementation 244 5.4. Numerical experiments 246 6. Concluding remarks 284 7. References 289 8. Index 300.
588 0 _aPrint version record and CIP data provided by publisher.
505 0 _aMathematical Considerations -- The Stochastic Finite Element Method -- Stochastic Boundary Element Method -- The Stochastic Finite Difference Method -- Homogenization Problem.
650 0 _aEngineering
_xStatistical methods.
650 0 _aPerturbation (Mathematics)
650 7 _aSCIENCE
_xMechanics
_xGeneral.
_2bisacsh
650 7 _aEngineering
_xStatistical methods.
_2fast
_0(OCoLC)fst00910415
650 7 _aPerturbation (Mathematics)
_2fast
_0(OCoLC)fst01058905
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aKamiński, M.M. (Marcin M.), 1969-
_tStochastic perturbation method for computational mechanics
_z9780470770825
_w(DLC) 2012029897
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781118481844
_zWiley Online Library
938 _a123Library
_b123L
_n63900
938 _aEBL - Ebook Library
_bEBLB
_nEBL1120830
938 _aebrary
_bEBRY
_nebr10657788
938 _aEBSCOhost
_bEBSC
_n531378
938 _aIngram Digital eBook Collection
_bIDEB
_ncis24807351
938 _aRecorded Books, LLC
_bRECE
_nrbeEB00066916
938 _aYBP Library Services
_bYANK
_n10001581
938 _aYBP Library Services
_bYANK
_n9984564
938 _aYBP Library Services
_bYANK
_n10195837
994 _a92
_bDG1
999 _c12214
_d12214